Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: covidwho-20245260

ABSTRACT

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chick Embryo , Infectious bronchitis virus/genetics , Organ Culture Techniques , Trachea , Chickens , Cell Line , Coronavirus Infections/veterinary
2.
Vet Microbiol ; 280: 109709, 2023 May.
Article in English | MEDLINE | ID: covidwho-2297201

ABSTRACT

Infectious bronchitis virus (IBV) has restricted cell and tissue tropism. IBVs, except the Beaudette strain, can infect and replicate in chicken embryos, primary chicken embryo kidneys, and primary chicken kidney cells, only. The limited viral cell tropism of IBV substantially hinders in vitro cell-based research on pathogenic mechanisms and vaccine development. Herein, the parental H120 vaccine strain was serially passaged for five generations in chicken embryos, 20 passages in CK cells and 80 passages in Vero cells. This passaging yielded a Vero cell-adapted strain designated HV80. To further understand viral evolution, serial assessments of infection, replication, and transmission in Vero cells were performed for the viruses obtained every tenth passage. The ability to form syncytia and the replication efficiency significantly after the 50th passage (strain HV50). HV80 also displayed tropism extension to DF-1, BHK-21, HEK-293 T, and HeLa cells. Whole genome sequencing of viruses from every tenth generation revealed a total of 19 amino acid point mutations in the viral genome by passage 80, nine of which occurred in the S gene. The second furin cleavage site appeared in viral evolution and may be associated with cell tropism extension of HV80.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Viral Vaccines , Chlorocebus aethiops , Chick Embryo , Animals , Humans , Vero Cells , Infectious bronchitis virus/genetics , HeLa Cells , HEK293 Cells , Chickens , Coronavirus Infections/veterinary
3.
Poult Sci ; 102(4): 102534, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287161

ABSTRACT

Although vaccines play a major role in the prevention of infectious bronchitis (IB), Anti-IB drugs still have great potential in poultry production. Radix Isatidis polysaccharide (RIP) is a crude extract of Banlangen with antioxidant, antibacterial, antiviral, and multiple immunomodulatory functions. The aim of this study was to explore the innate immune mechanisms responsible for RIP-mediated alleviation of infectious bronchitis virus (IBV)-induced kidney lesions in chickens. Specific-pathogen-free (SPF) chicken and chicken embryo kidney (CEK) cells cultures were pretreated with RIP and then infected with the QX-type IBV strain, Sczy3. Morbidity, mortality, and tissue mean lesion scores were calculated for IBV-infected chickens, and the viral loads, inflammatory factor gene mRNA expression levels, and innate immune pathway gene mRNA expression levels in infected chickens and CEK cell cultures were determined. The results show that RIP could alleviate IBV-induced kidney damage, decrease CEK cells susceptibility to IBV infection, and reduce viral loads. Additionally, RIP reduced the mRNA expression levels of the inflammatory factors IL-6, IL-8, and IL-1ß by decreasing the mRNA expression level of NF-κB. Conversely, the expression levels of MDA5, TLR3, STING, Myd88, IRF7, and IFN-ß were increased, indicating that RIP conferred resistance to QX-type IBV infection via the MDA5, TLR3, IRF7 signaling pathway. These results provide a reference for both further research into the antiviral mechanisms of RIP and the development of preventative and therapeutic drugs for IB.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Chick Embryo , Animals , Chickens/genetics , Toll-Like Receptor 3 , Coronavirus Infections/veterinary , Signal Transduction , Antiviral Agents/pharmacology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , RNA, Messenger , Poultry Diseases/prevention & control
4.
Influenza Other Respir Viruses ; 17(3): e13114, 2023 03.
Article in English | MEDLINE | ID: covidwho-2286196

ABSTRACT

The surface-enhanced Raman scattering (SERS) has recently drawn attention in the detection of respiratory viruses, but there have been few reports of the direct detection of viruses. In this study, a sandwich immunomagnetic bead SERS was established for the rapid diagnosis of the H5N1 influenza virus. The detection limit was estimated to be 5.0 × 10-6 TCID50/ml. The method showed excellent specificity with no cross-reaction with H1N1, H5N6 or H9N2. The H5N1 influenza virus detection accuracy of the SERS method was 100% in chicken embryos. The results hold great promise for the utilization of SERS as an innovative approach in the diagnosis of influenza virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Chick Embryo , Humans , Chickens
5.
Vet Microbiol ; 277: 109619, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2150799

ABSTRACT

The virulence of avian gamma-coronavirus infectious bronchitis viruses (IBV) for the kidney has led to high mortality in dominant-genotype isolations, but the key sites of viral protein that determine kidney tropism are still not fully clear. In this study, the amino acid sequences of the S2 subunit of IBVs with opposing adaptivity to chicken embryonic kidney cells (CEKs) were aligned to identify putative sites associated with differences in viral adaptability. The S2 gene and the putative sites of the non-adapted CN strain were introduced into the CEKs-adapted SczyC30 strain to rescue seven mutants. Analysis of growth characteristics showed that the replacement of the entire S2 subunit and the L1089I substitution in the S2 subunit entirely abolished the proliferation of recombinant IBV in CEKs as well as in primary chicken oviduct epithelial cells. Pathogenicity assays also support the decisive role of this L1089 for viral nephrotropism, and this non-nephrotropic L1089I substitution significantly attenuates pathogenicity. Analysis of the putative cause of proliferation inhibition in CEKs suggests that the L1089I substitution affects neither virus attachment nor endocytosis, but instead fails to form double-membrane vesicles to initiate the viral replication and translation. Position 1089 of the IBV S2 subunit is conservative and predicted to lie in heptad repeat 2 domains. It is therefore reasonable to conclude that the L1089I substitution alters the nephrotropism of parent strain by affecting virus-cell fusion. These findings provide crucial insights into the adaptive mechanisms of IBV and have applications in the development of vaccines and drugs against IB.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Chick Embryo , Animals , Cell Fusion/veterinary , Chickens , Viral Tropism , Kidney , Tropism , Coronavirus Infections/veterinary , Spike Glycoprotein, Coronavirus/genetics
6.
Arch Razi Inst ; 77(5): 1709-1714, 2022 10.
Article in English | MEDLINE | ID: covidwho-2006668

ABSTRACT

Feline coronavirus (FCoV) is an enveloped single-stranded RNA virus, affecting wild and domestic cats. Feline infectious peritonitis viruses (FIPV) variants of FCoV cause fatal peritonitis affecting approximately 5% of FCoV infected animals. The present study aimed to detect and isolate the feline infectious peritonitis virus for the first time in Iraq. In this study, 50 samples (fecal swab and peritoneal fluid) were collected from suspected pet cats from different areas of Baghdad, Iraq. The very suitable age was under two years old.  Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) was used to detect Feline infectious peritonitis in infected collected samples by the amplification of spike protein (S). The result of real-time RT-PCR revealed that out of 50 samples from suspected cats, 10 samples were positive for FIPV. Moreover, 10 positive samples by real-time RT-PCR were used for the isolation of the virus in chicken embryo fibroblast cell culture. Subsequently, the isolated virus was detected by real-time RT-PCR and then by conventional RT-PCR, followed by electrophoresis.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Chick Embryo , Animals , Cats , Feline Infectious Peritonitis/diagnosis , Coronavirus, Feline/genetics , Real-Time Polymerase Chain Reaction/veterinary , Iraq
7.
Microbiol Spectr ; 10(4): e0140522, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909614

ABSTRACT

We previously found that a deletion in γ-coronavirus Infectious bronchitis virus (IBV) accessory gene 5a is critical for decreased viral pathogenicity in chickens. Here, we systematically analyzed IBV virus infection: invasion, genome replication, subgenomic mRNA (sgmRNA) synthesis, protein synthesis, and virion release. The ability of the mutant IBV strain rYN-Δ5a to invade susceptible cells was not significantly different from that of parental rYN. However, compared with rYN, the level of sgmRNA synthesis and genome replication after cell entry by rYN-Δ5a was significantly lower in the early stage, resulting in a significantly lower level of nucleoprotein (N) synthesis and a consequent significantly lower number of offspring viruses released into the supernatant. The detected 5a protein was diffusely distributed in the cytoplasm and perinuclear area. We identified 16 differentially expressed host proteins, 8 of which were found to be host nuclear and cytoplasmic transport-related proteins. Coimmunoprecipitation revealed an interaction between hemagglutinin (HA)-tagged TNPO1, TNPO3, XPO1, XPOT, RanBP1, and EIF2B4 proteins and Flag-tagged 5a protein, and laser confocal microscopy confirmed 5a protein colocalization with these proteins, indicating that 5a protein can cause changes in the host protein localization. These host proteins promote the nuclear localization of N proteins, so we believe that 5a protein can hijack host nucleoplasmic transport-related proteins to help N enter the nucleus. This may involve regulating the cell cycle to promote the optimal intracellular conditions for virus assembly or by participating in the regulation of nucleolar function as a strategy to optimize virus replication. IMPORTANCE Coronaviruses (CoVs) have a huge impact on humans and animals. It is important for the prevention and control of the viruses to assess the molecular mechanisms related to virulence attenuation. Here, we systematically analyzed a single cycle of virus infection by γ-CoV IBV lacking accessory protein 5a. We observed that a 5a deletion in the IBV genome affected virus replication and sgmRNA synthesis early in the virus life cycle, leading to decreases in protein synthesis, offspring virus assembly, and virion release in chicken embryonic kidney cells. IBV 5a protein was found to interact with multiple host nuclear and cytoplasmic transport- and translation-related proteins, which can also interact with IBV N and relocate it into the cell nucleus. These findings provide a comprehensive view regarding the importance of IBV accessory protein 5a and an important theoretical basis for studying the interaction between coronavirus and host cell proteins.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Virus Diseases , Animals , Chick Embryo , Chickens , Coronavirus Infections/veterinary , Host Microbial Interactions , Infectious bronchitis virus/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Nucleotides/metabolism , Virus Diseases/veterinary , Virus Replication , beta Karyopherins/metabolism
8.
J Virol ; 96(12): e0068622, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1874505

ABSTRACT

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Subject(s)
Coronavirus Infections , Endoribonucleases , Infectious bronchitis virus , Stress Granules , Virus Replication , Animals , Antiviral Agents/pharmacology , Chick Embryo , Chickens , Coronavirus Infections/veterinary , Endoribonucleases/genetics , Infectious bronchitis virus/enzymology , Infectious bronchitis virus/physiology , Poultry Diseases/virology , RNA, Double-Stranded
9.
J Virol ; 96(6): e0205921, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1788916

ABSTRACT

The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.


Subject(s)
Amino Acids , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Nonstructural Proteins , Viral Vaccines , Amino Acids/chemistry , Amino Acids/genetics , Animals , Chick Embryo , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Female , Infectious bronchitis virus/genetics , Poultry Diseases/prevention & control , Poultry Diseases/virology , Vaccines, Attenuated/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Vaccines/genetics
10.
Transbound Emerg Dis ; 69(5): e2006-e2019, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1765050

ABSTRACT

A novel swine enteric alphacoronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), related to Rhinolophus bat CoV HKU2 in the subgenus Rhinacovirus emerged in southern China in 2017, causing diarrhoea in newborn piglets, and critical questions remain about the pathogenicity, cross-species transmission and potential animal reservoirs. Our laboratory's previous research has shown that SADS-CoV can replicate in various cell types from different species, including chickens. Here, we systematically explore the susceptibility of chickens to a cell-adapted SADS-CoV strain both in vitro and in vivo. First, evidence of SADS-CoV replication in primary chicken cells, including cytopathic effects, immunofluorescence staining, growth curves and structural protein expression, was proven. Furthermore, we observed that SADS-CoV replicated in chicken embryos without causing gross lesions and that experimental infection of chicks resulted in mild respiratory symptoms. More importantly, SADS-CoV shedding and viral distribution in the lungs, spleens, small intestines and large intestines of infected chickens were confirmed by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The genomic sequence of the original SADS-CoV from the pig source sample in 2017 was determined to have nine nucleotide differences compared to the cell-adapted strain used; among these were three nonsynonymous mutations in the spike gene. These results collectively demonstrate that chickens are susceptible to SADS-CoV infection, suggesting that they are a potential animal reservoir. To our knowledge, this study provides the first experimental evidence of cross-species infection in which a mammalian alphacoronavirus is able to infect an avian species.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Cross Infection , Alphacoronavirus/genetics , Animals , Chick Embryo , Chickens , Coronavirus Infections/veterinary , Cross Infection/veterinary , Nucleotides , Swine
11.
Front Immunol ; 12: 824728, 2021.
Article in English | MEDLINE | ID: covidwho-1686477

ABSTRACT

We generated an optimized COVID-19 vaccine candidate based on the modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, termed MVA-CoV2-S(3P). The S(3P) protein was expressed at higher levels (2-fold) than the non-stabilized S in cells infected with the corresponding recombinant MVA viruses. One single dose of MVA-CoV2-S(3P) induced higher IgG and neutralizing antibody titers against parental SARS-CoV-2 and variants of concern than MVA-CoV2-S in wild-type C57BL/6 and in transgenic K18-hACE2 mice. In immunized C57BL/6 mice, two doses of MVA-CoV2-S or MVA-CoV2-S(3P) induced similar levels of SARS-CoV-2-specific B- and T-cell immune responses. Remarkably, a single administration of MVA-CoV2-S(3P) protected all K18-hACE2 mice from morbidity and mortality caused by SARS-CoV-2 infection, reducing SARS-CoV-2 viral loads, histopathological lesions, and levels of pro-inflammatory cytokines in the lungs. These results demonstrated that expression of a novel full-length prefusion-stabilized SARS-CoV-2 S protein by the MVA poxvirus vector enhanced immunogenicity and efficacy against SARS-CoV-2 in animal models, further supporting MVA-CoV2-S(3P) as an optimized vaccine candidate for clinical trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/mortality , COVID-19 Vaccines/genetics , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Cytokines/analysis , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmids/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccine Efficacy , Vaccines, DNA/genetics , Vaccinia virus/immunology , Vero Cells , Viral Vaccines/genetics
12.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1674673

ABSTRACT

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Subject(s)
Adjuvants, Vaccine/therapeutic use , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccine Development/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/therapeutic use , Cells, Cultured , Chick Embryo , Gene Expression Regulation/drug effects , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/pharmacology , Interferon Type I/genetics , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Primary Prevention/methods , SARS-CoV-2/immunology
13.
Antiviral Res ; 197: 105232, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588314

ABSTRACT

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Genome, Viral/drug effects , Methyltransferases/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , Chick Embryo , Chlorocebus aethiops , Chromatin Immunoprecipitation Sequencing , DNA Methylation/drug effects , DNA Methylation/physiology , Drug Resistance, Viral/drug effects , Genome, Viral/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Humans , Lethal Dose 50 , Mice , Protein Biosynthesis/drug effects , RNA, Viral/drug effects , RNA, Viral/metabolism , Rabbits , SARS-CoV-2/genetics , Specific Pathogen-Free Organisms , Transcription, Genetic/drug effects , Vero Cells
14.
Transbound Emerg Dis ; 68(6): 3038-3042, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526426

ABSTRACT

The susceptibility of turkeys, chickens and chicken embryos to SARS-CoV-2 was evaluated by experimental infection. Turkeys and chickens were inoculated using a combination of intranasal, oral and ocular routes. Both turkeys and chickens did not develop clinical disease or seroconvert following inoculation. Viral RNA was not detected in oral swabs, cloacal swabs or in tissues using quantitative real-time RT-PCR. In addition, chicken embryos were inoculated by various routes including the yolk sac, intravenous, chorioallantoic membrane and allantoic cavity. In all instances, chicken embryos failed to support replication of the virus. SARS-CoV-2 does not affect turkeys or chickens in the current genetic state and does not pose any potential risk to establish an infection in both species of domestic poultry.


Subject(s)
COVID-19 , Poultry Diseases , Animals , COVID-19/veterinary , Chick Embryo , Chickens , SARS-CoV-2 , Turkeys
15.
Bioorg Chem ; 114: 105131, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293593

ABSTRACT

Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/chemical synthesis , Oxindoles/chemical synthesis , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Cell Cycle , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Humans , Oxindoles/pharmacology , Vero Cells , COVID-19 Drug Treatment
16.
J Vet Diagn Invest ; 33(3): 577-581, 2021 May.
Article in English | MEDLINE | ID: covidwho-1271943

ABSTRACT

The H2 subtypes of avian influenza A viruses (avian IAVs) have been circulating in poultry, and they have the potential to infect humans. Therefore, establishing a method to quickly detect this subtype is pivotal. We developed a TaqMan minor groove binder real-time RT-PCR assay that involved probes and primers based on conserved sequences of the matrix and hemagglutinin genes. The detection limit of this assay was as low as one 50% egg infectious dose (EID50)/mL per reaction. This assay is specific, sensitive, and rapid for detecting avian IAV H2 subtypes.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Animals , Chick Embryo , Chickens , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
17.
Virol J ; 18(1): 113, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1279301

ABSTRACT

BACKGROUND: Respiratory RNA viruses including influenza virus have been a cause of health and economic hardships. These viruses depend on its host for replication and infection. Influenza virus infection is lethal to the chick embryo. We examined whether a combination of trimethoprim and zinc (Tri-Z), that acts on the host, can reduce the lethal effect of influenza A virus in chick embryo model. METHOD: Influenza virus was isolated from patients and propagated in eggs. We determined viral load that infects 50% of eggs (50% egg lethal dose, ELD50). We introduced 10 ELD50 into embryonated eggs and repeated the experiments using 100 ELD50. A mixture of zinc oxide (Zn) and trimethoprim (TMP) (weight/weight ratios ranged from 0.01 to 0.3, Zn/TMP with increment of 0.1) was tested for embryo survival of the infection (n = 12 per ratio, in triplicates). Embryo survival was determined by candling eggs daily for 7 days. Controls of Zn, TMP, saline or convalescent serum were conducted in parallel. The effect of Tri-Z on virus binding to its cell surface receptor was evaluated in a hemagglutination inhibition (HAI) assay using chicken red cells. Tri-Z was prepared to concentration of 10 mg TMP and 1.8 mg Zn per ml, then serial dilutions were made. HAI effect was expressed as scores where ++++ = no effect; 0 = complete HAI effect. RESULTS: TMP, Zn or saline separately had no effect on embryo survival, none of the embryos survived influenza virus infection. All embryos treated with convalescent serum survived. Tri-Z, at ratio range of 0.15-0.2 (optimal ratio of 0.18) Zn/TMP, enabled embryos to survive influenza virus despite increasing viral load (> 80% survival at optimal ratio). At concentration of 15 µg/ml of optimal ratio, Tri-Z had total HAI effect (scored 0). However, at clinical concentration of 5 µg/ml, Tri-Z had partial HAI effect (+ +). CONCLUSION: Acting on host cells, Tri-Z at optimal ratio can reduce the lethal effect of influenza A virus in chick embryo. Tri-Z has HAI effect. These findings suggest that combination of trimethoprim and zinc at optimal ratio can be provided as treatment for influenza and possibly other respiratory RNA viruses infection in man.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Trimethoprim/pharmacology , Zinc/pharmacology , Animals , Chick Embryo , Humans , Orthomyxoviridae Infections/drug therapy
18.
Vet Microbiol ; 254: 109014, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1107294

ABSTRACT

TW-like infectious bronchitis virus (IBV) with high pathogenicity is becoming the predominant IBV type circulating in China. To develop vaccines against TW-like IBV strains and investigate the critical genes associated with their virulence, GD strain was attenuated by 140 serial passages in specific-pathogen-free embryonated eggs and the safety and efficacy of the attenuated GD strain (aGD) were examined. The genome sequences of GD and aGD were also compared and the effects of mutations in the S gene were observed. The results revealed that aGD strain showed no obvious pathogenicity with superior protective efficacy against TW-like and QX-like virulent IBV strains. The genomes of strains aGD and GD shared high similarity (99.87 %) and most of the mutations occurred in S gene. Recombinant IBV strain rGDaGD-S, in which the S gene was replaced with the corresponding regions from aGD, showed decreased pathogenicity compared with its parental strain. In conclusion, attenuated TW-like IBV strain aGD is a potential vaccine candidate and the S gene is responsible for its attenuation. Our research has laid the foundation for future exploration of the attenuating molecular mechanism of IBV.


Subject(s)
Chickens/virology , Infectious bronchitis virus/genetics , Infectious bronchitis virus/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/genetics , Virulence Factors/genetics , Animals , Chick Embryo , Coronavirus Infections/prevention & control , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Reverse Genetics/methods , Serial Passage , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
19.
Int J Nanomedicine ; 16: 2689-2702, 2021.
Article in English | MEDLINE | ID: covidwho-1186650

ABSTRACT

BACKGROUND: The COVID-19 pandemic is requesting highly effective protective personnel equipment, mainly for healthcare professionals. However, the current demand has exceeded the supply chain and, consequently, shortage of essential medical materials, such as surgical masks. Due to these alarming limitations, it is crucial to develop effective means of disinfection, reusing, and thereby applying antimicrobial shielding protection to the clinical supplies. PURPOSE: Therefore, in this work, we developed a novel, economical, and straightforward approach to promote antimicrobial activity to surgical masks by impregnating silver nanoparticles (AgNPs). METHODS: Our strategy consisted of fabricating a new alcohol disinfectant formulation combining special surfactants and AgNPs, which is demonstrated to be extensively effective against a broad number of microbial surrogates of SARS-CoV-2. RESULTS: The present nano-formula reported a superior microbial reduction of 99.999% against a wide number of microorganisms. Furthermore, the enveloped H5N1 virus was wholly inactivated after 15 min of disinfection. Far more attractive, the current method for reusing surgical masks did not show outcomes of detrimental amendments, suggesting that the protocol does not alter the filtration effectiveness. CONCLUSION: The nano-disinfectant provides a valuable strategy for effective decontamination, reuse, and even antimicrobial promotion to surgical masks for frontline clinical personnel.


Subject(s)
Anti-Infective Agents/pharmacology , Disinfectants/pharmacology , Masks , Metal Nanoparticles/chemistry , Silver/pharmacology , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Chick Embryo , Disinfectants/administration & dosage , Disinfectants/chemistry , Disinfection/methods , Dynamic Light Scattering , Equipment Reuse , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Masks/virology , Metal Nanoparticles/administration & dosage , Microbial Sensitivity Tests , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Textiles , X-Ray Diffraction
20.
Antiviral Res ; 189: 105056, 2021 05.
Article in English | MEDLINE | ID: covidwho-1126675

ABSTRACT

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Subject(s)
Antiviral Agents , Emetine , Infectious bronchitis virus/drug effects , RNA, Viral/metabolism , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chick Embryo , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Emetine/pharmacology , Emetine/therapeutic use , Eukaryotic Initiation Factor-4E/metabolism , Protein Binding/drug effects , RNA, Messenger/metabolism , Signal Transduction , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL